起伏浅表层稳定的频率域黏声逆时偏移方法

刘延利, 李振春, 王姣, 孙苗苗, 刘强

石油地球物理勘探 ›› 2020, Vol. 55 ›› Issue (6) : 1312-1320.

PDF(7753 KB)
PDF(7753 KB)
石油地球物理勘探 ›› 2020, Vol. 55 ›› Issue (6) : 1312-1320. DOI: 10.13810/j.cnki.issn.1000-7210.2020.06.017
偏移成像

起伏浅表层稳定的频率域黏声逆时偏移方法

  • 刘延利, 李振春, 王姣, 孙苗苗, 刘强
作者信息 +

Stable viscoacoustic reverse time migration in frequency domain for undulated shallow surface

  • LIU Yanli, LI Zhenchun, WANG Jiao, SUN Miaomiao, LIU Qiang
Author information +
文章历史 +

摘要

地震波在地下传播时能量呈指数衰减,因此常规黏声逆时偏移(Q-RTM)的解析解随频率呈指数增长,造成频率域波场补偿不稳定,甚至使有效波场被高频噪声覆盖,导致偏移失败。为此,基于前人认识,提出了起伏地表频率域稳定Q-RTM方法。通过对频率域波动方程增加一个稳定因子,推导了稳定的频率域Q-RTM波动方程,其中稳定因子只改变有效频带外高频的计算符号,不增加额外的计算量。具体实现流程为:①生成贴体网格以及建立物理空间与计算空间的映射关系;②在计算空间计算频率域黏声正、反向传播波场,利用反傅里叶变换(IFFT)得到相应的时间域波场;③利用建立的映射关系的逆映射得到物理空间正、反向传播波场;④利用互相关成像条件对时间域波场成像,并输出成像结果。模型测试和实际资料应用表明,所提方法能补偿由衰减引起的振幅和高频成分损失,从而显著提高地震分辨率,改善浅表层的成像品质。

Abstract

The energy of seismic wave decreases exponentially as it propagates underground.This results in the analytical solution of conventional viscoacoustic reverse time migration (Q-RTM) increasing exponentially with frequency,and consequently instable wave field compensation,and even failed migration due to the effective wave field covered by high-frequency noise.Based on available knowledge,a stable Q-RTM method in frequency domain for undulated shallow surface is proposed.To restrain the growth of high-frequency components,a stable factor is added to the frequency domain viscoacoustic equation,and its corresponding stable expression for Q-RTM is derived.The stable factor only changes the computing sign of the high frequency outside the effective frequency band,but not bringing additional calculation.The specific process is as follows:①Establish body-fitted grids and mapping the relationship between physical space and computational space; ②In the computational space,calculate the forward and backward wave fields with Q in frequency domain and obtain corresponding wave fields in time domain through IFFT; ③Obtain the forward and backward wave fields in physical space by the mapping relationship; ④Migrate according to the cross-correlation imaging conditions for every time step.Models and raw data have demonstrated that the proposed method can compensate amplitude and high frequencies caused by attenuation,and significantly improve seismic resolution and imaging quality of shallow surface.

关键词

起伏浅表层 / 频率域 / 黏声逆时偏移 / 稳定因子 / 贴体网格

Key words

undulated shallow surface / frequency domain / viscoacoustic reverse time migration / stable factor / body-fitted grid

引用本文

导出引用
刘延利, 李振春, 王姣, 孙苗苗, 刘强. 起伏浅表层稳定的频率域黏声逆时偏移方法[J]. 石油地球物理勘探, 2020, 55(6): 1312-1320 https://doi.org/10.13810/j.cnki.issn.1000-7210.2020.06.017
LIU Yanli, LI Zhenchun, WANG Jiao, SUN Miaomiao, LIU Qiang. Stable viscoacoustic reverse time migration in frequency domain for undulated shallow surface[J]. Oil Geophysical Prospecting, 2020, 55(6): 1312-1320 https://doi.org/10.13810/j.cnki.issn.1000-7210.2020.06.017
中图分类号: P631   

参考文献

[1] Clarke C G K.Time-varying deconvolution filters[J].Geophysics,1968,33(6):936-944.
[2] Margrave G F,Lamoureux M P,and Henley D C.Gabor deconvolution:Estimating reflectivity by nonstationary deconvolution of seismic data[J].Geophysics,2011,76(3):W15-W30.
[3] Yilmaz O.Seismic Data Analysis[M].Society of Ex-ploration Geophysicists,2001.
[4] WANG Y H.A stable and efficient approach of inverse Q filtering[J].Geophysics,2002,67(2):657-663.
[5] WANGYH.Inverse Q-filter for seismic resolutionenhancement[J].Geophysics,2006,71(3):V51-V60.
[6] Wang Y F,Zhou H,Chen H M,et al.Adaptive stabilization for Q-compensated reverse time migration[J].Geophysics,2018,83(1):S15-S32.
[7] Zhang Y,Zhang P,and Zhang H Z.Compensating for visco-acoustic effects in reverse-time migration[C].SEG Technical Program Expanded Abstracts,2010,29:3160-3164.
[8] Zhu T Y.Time-reverse modelling of acoustic wave propagation in attenuating media[J].Geophysical Journal International,2014,197(1):483-494.
[9] Dai N and West G F.Inverse Q migration[C].SEG Technical Program Expanded Abstracts,1994,13:1418-1421.
[10] Zhang J F and Wapenaar K.Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media[J].Geophysical Prospecting,2002,50(6):629-643.
[11] Deng F and Mcmechan G A.True-amplitude prestack depth migration[J].Geophysics,2007,72(3):S155-S166.
[12] Qu Y M,LI J L,Guan Z,et al.Viscoacoustic reverse time migration of joint primaries and different-order multiples[J].Geophysics,2020,85(2):S71-S87.
[13] Qu Y M,Guan Z,LI J L,et al.Fluid-solid coupled full-waveform inversion in the curvilinear coordinates for ocean-bottom cable data[J].Geophysics,2020,85(3):R113-R133.
[14] 梁昊.二维频率域声波方程正演模拟及其全波形反演研究[D].北京:中国地质大学(北京),2016.
LIANG Hao.2-D Frequency Acoustic Wave Equation Modeling and Full Wave Inversion[D].China University of Geosciences (Beijing),Beijing,2016.
[15] Lysmer J and Drake L A.A finite element method for seismology[J].Methods in Computational Physics:Advances in Research and Applications,1972,11:181-216.
[16] Marfurt K J.Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J].Geophysics,1984,49(5):533-549.
[17] Pratt R G and Worthington M H.Inverse theory applied to multi-source cross-hole tomography.Part 1:acoustic wave-equation method[J].Geophysical Prospecting,1990,38(3):287-310.
[18] Jo C H,Shu J J,and Shin C S.An optimal 9-point,finite-difference,frequency-space,2-D scalar wave extrapolator[J].Geophysics,1996,61(2):529-537.
[19] Shin C S,Yoon K,Marfurt K J,et al.Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion[J].Geophysics,2001,66(6):1856-1863.
[20] Chu C L,Phillips C,and Stoffa P L.Frequency domain modeling using implicit spatial finite difference operators[C].SEG Technical Program Expanded Abstracts,2010,29:3076-3080.
[21] 刘璐,刘洪,刘红伟.优化15点频率-空间域有限差分正演模拟[J].地球物理学报,2013,56(2):644-652.
LIU Lu,LIU Hong,and LIU Hongwei.Optimal 15-point finite difference forward modeling in frequency-space domain[J].Chinese Journal of Geophysics,2013,56(2):644-652.
[22] Zhao Z Y and Sen M K.Frequency-domain double-plane-wave least-squares reverse time migration[J].Geophysical Prospecting,2019,67(8):2061-2084.
[23] 董士琦,韩立国,胡勇,等.基于MCPML边界条件的频率域声波方程高精度模拟[J].石油地球物理勘探,2018,53(1):47-54.
DONG Shiqi,HAN Liguo,HU Yong,et al.Acoustic equation high-accuracy modeling in the frequency domain based on MCPML absorbing boundary[J].Oil Geophysical Prospecting,2018,53(1):47-54.
[24] 韩如冰,郎超.频率域八阶NAD有限差分模拟及全波形反演[J].石油地球物理勘探,2019,54(6):1254-1266.
HAN Rubing,LANG Chao.The eighth-order frequency-domain NAD method and full-waveform inversion[J].Oil Geophysical Prospecting,2019,54(6):1254-1266.
[25] 邹强,黄建平,李庆洋,等.伪深度域弹性波有限差分数值模拟及逆时偏移[J].石油地球物理勘探,2020,55(2):321-330.
ZOU Qiang,HUANG Jianping,LI Qingyang,et al.Elastic-wave numerical simulation and reverse time migration in pseudo-depth domain[J].Oil Geophysical Prospecting,2020,55(2):321-330.
[26] 吴吉忠,左虎.叠前衰减补偿时间偏移及GPU实现[J].石油地球物理勘探,2019,54(1):84-92.
WU Jizhong,ZUO Hu.Attenuation compensation in prestack time migration and its GPU implementation[J].Oil Geophysical Prospecting,2019,54(1):84-92.
[27] Chu W H.Development of a general finite difference approximation for a general domain,part Ⅰ:Machine transformation[J].Journal of Computational Physics,1971,8(3):392-408.
[28] Thomas P D and Middlecoff J F.Direct control of the grid point distribution in meshes generated by elliptic equations[J].AIAA Journal,1980,18(6):652-656.
[29] Tessmer E,Kosloff D,and Behle A.Elastic wave propagation simulation in the presence of surface topography[J].Geophysical Journal International,1992,108(2):621-632.
[30] Hilgenstock A.A fast method for the elliptic generation of three-dimensional grids with full boundary control[C].Numerical Grid Generation in Computational Fluid Mechanics,1988,137-146.
[31] 蒋丽丽,孙建国.基于Poisson方程的曲网格生成技术[J].世界地质,2008,27(3):298-305.
JIANG Lili and SUN Jianguo.Source terms of elliptic system in grid generation[J].Global Geology,2008,27(3):298-305.
[32] 丘磊.正交曲线坐标系下的地震波数值模拟技术研究[D].浙江杭州:浙江大学,2012.
QIU Lei.Study on Seismic Wave Simulations on Orthogonally Curvilinear Coordinate System[D].Zhejiang University,Hangzhou,Zhejiang,2012.
[33] 杨宇.基于贴体网格的黏弹性介质起伏地表正演模拟研究[D].山东青岛:中国石油大学(华东),2016.
YANG Yu.Study on Forward Modeling for Irregular Free-Surface in Viscoelastic Media Based on Body-Fitted Grid[D].China University of Petroleum (East China),Qingdao,Shandong,2016.
[34] Qu Y M and Li J L.Q-compensated reverse time migration in viscoacoustic media including surface topography[J].Geophysics,2019,84(4):S201-S217.
[35] 李庆洋.T分布起伏地表最小二乘逆时偏移[J].石油地球物理勘探,2019,54(5):1075-1083.
LI Qingyang.Least-squares reverse time migration on undulated surface based on T-distribution[J].Oil Geophysical Prospecting,2019,54(5):1075-1083.
[36] 魏文礼,王德意,刘玉玲.正交曲线网格生成技术的一点改进[J].武汉水利电力大学学报,2000,33(2):40-42.
WEI Wenli,WANG Deyi,and LIU Yuling.Some improvement on technique of orthogonal curvilinear grid generation[J].Engineering Journal of Wuhan University,2000,33(2):40-42.
[37] Gray S H and Marfurt K J.Migration from topography:Improving the near-surface image[J].Canadian Journal of Exploration Geophysics,1995,31(4):18-24.

基金

本项研究受国家自然科学基金项目“深水区非规则多次波分离与成像方法研究”(41974145)和中石油重大科技项目“塔里木盆地深层油气高效勘探开发理论及关键技术研究”(ZD2019-183-003)联合资助。
PDF(7753 KB)

70

Accesses

0

Citation

Detail

段落导航
相关文章

/