波形指示模拟在致密油水平井钻探中的应用

谢春临, 李永义, 陈志德, 扈玖战, 田梦, 王晓杨

石油地球物理勘探 ›› 2021, Vol. 56 ›› Issue (3) : 564-573.

PDF(2925 KB)
PDF(2925 KB)
石油地球物理勘探 ›› 2021, Vol. 56 ›› Issue (3) : 564-573. DOI: 10.13810/j.cnki.issn.1000-7210.2021.03.015
综合研究

波形指示模拟在致密油水平井钻探中的应用

  • 谢春临1, 李永义1, 陈志德1, 扈玖战1, 田梦2, 王晓杨3
作者信息 +

Seismic motion simulation for horizontal well drilling in Fuyu reservoirs

  • XIE Chunlin1, LI Yongyi1, CHEN Zhide1, HU Jiuzhan1, TIAN Meng2, WANG Xiaoyang3
Author information +
文章历史 +

摘要

扶余油层的地质、地球物理特征表现为:储层薄、空间多期叠置及地震分辨率不足、扶余油层顶面(T2)强反射对下部地层具有屏蔽作用;砂岩的速度和密度高于泥岩,但差异较小,且由于砂泥岩薄互层的调谐效应,致使波阻抗与砂岩的对应关系不明显;由自然伽马(GR)和电阻率曲线可以区分砂岩和泥岩。为此,选择GR进行波形指示模拟。地震波形指示模拟的基本思想是在等时格架约束下,利用地震波形的横向变化代替变差函数表征储层的空间变异性,在贝叶斯框架下有效结合地震、地质和测井信息,采用分频反演策略逐步提高反演结果的分辨率,即:由测井资料插值求取低频成分,利用地震谱模拟反演获得中频成分,由波形相控模拟、随机模拟分别提供确定性高频成分、随机性高频成分,合理加入高频成分大幅提升了储层预测的纵向分辨率。实际数据应用效果表明:①波形指示模拟在提高纵向分辨率的同时有效提高了横向分辨率,波形指示模拟产生的自然伽马数据体分辨率高,能够预测厚度大于2.4m的单砂体展布,但存在多解性,须在钻井数据指导下确定地质甜点,以指导水平井部署及随钻导向。②有效样本数和最佳截止频率是波形指示模拟的重要参数,决定了反演效果,须经试验反复筛选。

Abstract

The geologic and geophysical characteristics of Fuyu reservoirs are as follows:① The reservoirs are thin and superposed; ② Their seismic resolution is low and T2 events (strong top reflections) shield the reservoirs; ③ Both the velocity and the density of the sandstone are higher than that of the mudstone, but the difference is tiny; ④ The corresponding relationship between the impedance and the sandstone is not obvious due to the tuning effect of thin interbedded sandstone and mudstone; ⑤ Gamma ray (GR) and resistivity logging curves can distinguish the sandstone from the mudstone. Finally, GR logging curves were chosen as the characteristic curves used in the seismic motion simulation (SMS) process. The basic ideas of seismic motion simulation are that, constrained by sequence stratigraphic framework, the lateral changes of seismic waveform instead of variation function is used to express the spatial variation of reservoir; constrained by the Bayesian framework, and considering seismic, geological and logging information, a frequency-divided inversion strategy is taken to gradually improve the resolution of inversion results, namely to calculate the low frequency components through logging interpolation, conduct seismic spectrum simulation inversion to obtain intermediate frequency components, and run waveform controlled simulation and random simulation to provide deterministic high-frequency components and random high-frequency components. The reasonable high-frequency components help greatly improve the vertical resolution of the reservoir prediction result. The application of this method to real data shows that:① SMS can improve both vertical resolution and lateral resolution; GR SMS results have so high resolution that they can predict single sand bodies more than 2.4 m thick. However, there are multiple solutions and it is hard to select the best solution. Drilling data should be used to select, and only the solution selected can be used to predict geologic sweet points for future deployment and drilling of horizontal wells; ② Effective samples and the best cut-off frequency, two important parameters of SMS, which decide the quality of inversion, should be chosen through repeated tests.

关键词

扶余油层 / 河道砂岩 / 波形指示模拟 / 分频反演 / 有效样本数 / 最佳截止频率

Key words

Fuyu reservoir / channel sandstone / seismic motion simulation / frequency-divided inversion / effective samples / best cut-off frequency

引用本文

导出引用
谢春临, 李永义, 陈志德, 扈玖战, 田梦, 王晓杨. 波形指示模拟在致密油水平井钻探中的应用[J]. 石油地球物理勘探, 2021, 56(3): 564-573 https://doi.org/10.13810/j.cnki.issn.1000-7210.2021.03.015
XIE Chunlin, LI Yongyi, CHEN Zhide, HU Jiuzhan, TIAN Meng, WANG Xiaoyang. Seismic motion simulation for horizontal well drilling in Fuyu reservoirs[J]. Oil Geophysical Prospecting, 2021, 56(3): 564-573 https://doi.org/10.13810/j.cnki.issn.1000-7210.2021.03.015
中图分类号: P631   

参考文献

[1] 林铁锋,康德江,姜丽娜.松辽盆地北部扶余油层致密油地质特征及勘探潜力[J].大庆石油地质与开发,2019,38(5):94-100.
LIN Tiefeng,KANG Dejiang,JIANG Li'na.Geological characteristics and exploration potential of the tight oil in Fuyu oil reservoirs of North Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):94-100.
[2] 曲寿利.频率加权滤波方法及应用[J].石油地球物理勘探,1997,32(6):865-871.
QU Shouli. Frenquency-weighted filtering method and its application[J].Oil Geophysical Prospecting,1997,32(6):865-871.
[3] 陈双全,李向阳.应用傅里叶尺度变换提高地震资料分辨率[J].石油地球物理勘探,2015,50(2):213-218.
CHEN Shuangquan and LI Xiangyang.Seismic resolution enhancement based on the scale characteristics of Fourier transform[J].Oil Geophysical Prospecting, 2015,50(2):213-218.
[4] 刘万金,周辉,袁三一,等.谱反演在地震属性解释中的应用[J].石油地球物理勘探,2013,48(3):423-428.
LIU Wanjin,ZHOU Hui,YUAN Sanyi,et al.Applications of spectral inversion in the seismic attribute interpretation[J].Oil Geophysical Prospecting,2013,48(3):423-428.
[5] 田立新,王波,张志军.基于地质统计信息的谱反演法[J].石油地球物理勘探,2015,50(5):967-972.
TIAN Lixin,WANG Bo and ZHANG Zhijun.A spectral inversion method based on geostatistical information[J].Oil Geophysical Prospecting,2015,50(5):967-972.
[6] 朱卫星,张春晓,张文博,等.基于模拟退火算法的地震资料谱反演技术[J].石油地球物理勘探,2015,50(3):495-501,515.
ZHU Weixing, ZHANG Chunxiao, ZHANG Wenbo, et al.Seismic spectral inversion based on simulate dannealin[J].Oil Geophysical Prospecting,2015,50(3):495-501,515.
[7] 赵秋芳,云美厚,朱丽波,等.近地表Q 值测试方法研究进展与展望[J].石油地球物理勘探,2019,54(6):1397-1418.
ZHAO Qiufang,YUN Meihou,ZHU Libo,et al. Progress and outlook of near-surface quality factor Q measurement and inversion[J].Oil Geophysical Prospecting,2019,54(6):1397-1418.
[8] 陈志德,初海红.黏滞介质吸收补偿叠前时间偏移的倾角道集孔径优选[J].石油地球物理勘探,2016,51(3):444-451.
CHEN Zhide and CHU Haihong.Optimization of va-riable migration aperture in dip-angle gathers for prestack time migration with absorption compensation in viscous elastic media[J].Oil Geophysical Prospecting,2016,51(3):444-451.
[9] 汪勇,徐佑德,高刚,等. 二维黏滞声波方程的优化组合型紧致有限差分数值模拟[J].石油地球物理勘探,2018,53(6):1152-1164.
WANG Yong,XU Youde,GAO Gang,et al.Numerical simulation of 2D visco-acoustic wave equation with an optimized combined compact difference scheme[J].Oil Geophysical Prospecting,2018,53(6):1152-1164.
[10] 殷文,朱剑兵,李援,等.基于地震分频调谐体和Whee-ler转换技术的薄储层预测方法[J].石油地球物理勘探,2018,53(6):1269-1282.
YIN Wen, ZHU Jianbing, LI Yuan, et al. Thin re-servoir prediction based on seismic segmented frequency band tune and Wheeler transformation[J].Oil Geophysical Prospecting,2018,53(6):1269-1282.
[11] 范明霏,吴胜和,曲晶晶,等.基于广义S变换模极大值的薄储层刻画新方法[J].石油地球物理勘探,2017,52(4):805-814.
FAN Mingfei,WU Shenghe,QU Jingjing,et al.A new interpretation method for thin beds with the maximum modulus based on the generalized S transform[J].Oil Geophysical Prospecting,2017,52(4):805-814.
[12] 王延光,李皓,李国发,等.一种用于薄层和薄互层砂体厚度估算的复合地震属性[J].石油地球物理勘探,2020,55(1):153-160.
WANG Yanguang,LI Hao,LI Guofa,et al. A composite seismic atttribute used to estimate the sand thickness for thin ded and thin interbed[J].Oil Geophysical Prospecting,2020,55(1):153-160.
[13] 张繁昌,肖张波,印兴耀.地震数据约束下的贝叶斯随机反演[J].石油地球物理勘探,2014,49(1):176-182.
ZhANG Fanchang, XIAO Zhangbo and YIN Xingyao. Bayesian stochastic inversion constrained by seismic data[J].Oil Geophysical Prospecting,2014,49(1):176-182.
[14] 郭同翠,姜明军,纪迎章,等.叠前地质统计学反演在页岩甜点和薄夹层预测中的应用——以西加拿大盆地W区块为例[J].石油地球物理勘探,2020,55(1):167-175.
GUO Tongcui,JIANG Mingjun,JI Yingzhang,et al.The application of prestack geostatistical inversion in the prediction of shale sweet spots and thin interbeds:a case study of block W in Western Canada basin[J].Oil Geophysical Prospecting, 2020,55(1):167-175.
[15] 张胜,韩春元,杜新江,等.测井岩性解释模型构建技术及在薄储层反演中的应用[J].石油地球物理勘探,2018,53(增刊1):316-323.
ZHANG Sheng,HAN Chunyuan,DU Xinjiang,et al. Logging lithologic interpretation model construction technology and its application in thin reservoir inversion[J].Oil Geophysical Prospecting, 2018,53(S1):316-323.
[16] 车廷信,黄延章,刘赫.基于测井敏感属性重构的随机模拟地震反演[J].石油地球物理勘探,2013,48(增刊1):131-138.
CHE Tingxin,HUANG Yanzhang,LIU He.Seismic stochastic inversion based on logging sensitive attri-butes reconstruction[J].Oil Geophysical Prospecting, 2013,48(S1):131-138.
[17] 王明超,刘宝鸿,张斌,等.利用高分辨率波阻抗反演技术预测薄储层——以辽河坳陷牛居地区为例[J].石油地球物理勘探,2018,53(增刊1):186-190.
WANG Mingchao, LIU Baohong,ZHANG Bin, et al. Thin bed prediction with high-resolution impe-dance inversion:a case study of Niuju Area, Liaohe Basin[J].Oil Geophysical Prospecting,2018,53(S1):186-190.
[18] 张志伟,王春生,林雅平,等.地震相控非线性随机反演在阿姆河盆地A区块碳酸盐岩储层预测中的应用[J].石油地球物理勘探,2011,46(2):304-310.
ZHANG Zhiwei, WANG Chunsheng, LIN Yaping, et al. Application of facies-controlled nonlinear random inversion for carbonate reservoir prediction in Block A of Amu-darya Basin[J].Oil Geophysical Prospecting,2011,46(2):304-310.
[19] 张新超,李锋,严永新,等.分频融合反演技术在春光探区的应用[J].石油地球物理勘探,2018,53(5):1006-1013.
ZHANG Xinchao,LI Feng,YAN Yongxin,et al. Application of segmented-frequency-band fusion inversion in Chunguang prospect area[J].Oil Geophysical Prospecting,2018,53(5):1006-1013.
[20] 杜伟维,金兆军,邸永香.地震波形指示反演及特征参数模拟在薄储层预测中的应用[J].工程地球物理学报,2017,14(1):56-61.
DU Weiwei,JIN Zhaojun,DI Yongxiang.The application of seismic waveform indicator inversion and cha-racteristic parameter simulation to thin reservoir prediction[J].Chinese Journal of Engineering Geophy-sics,2017,14(1):56-61.
[21] 顾雯,徐敏,王铎翰,等.地震波形指示反演技术在薄储层预测中的应用——以准噶尔盆地B地区薄层砂岩气藏为例[J].天然气地球科学,2016,27(11):2064-2069.
GU Wen,XU Min,WANG Duohan,et al.Application of seismic motion inversion technology in thin reservoir prediction:A case study of the thin sandstone gas reservoir in the B area of Junggar Basin[J].Natural Gas Geoscience,2016,27(11):2064-2069.
[22] 韩长城,林承焰,任丽华,等.地震波形指示反演在东营凹陷王家岗地区沙四上亚段滩坝砂的应用[J].中国石油大学学报(自然科学版),2017,41(2):60-69.
HAN Changcheng,LIN Chengyan,REN Lihua,et al. Application of seismic waveform inversion in Es4s beach-bar sandstone in Wangjiagang area,Dongying Depression[J].Journal of China University of Petroleum(Editon of Natural Science), 2017,41(2):60-69.
[23] 王贤,唐建华,毕建军,等.地震波形指示反演在石南地区薄储层预测中的应用[J].新疆石油天然气,2017,13(3):1-5.
WANG Xian,TANG Jianhua,BI Jianjun,et al. Application of seismic motion inversion to prediction of thin reservoir in Shinan area[J].Xinjiang Oil and Gas,2017,13(3):1-5.
[24] 张琬璐.波形指示反演技术方法研究及应用[J].非常规油气,2019,6(3):21-25,14.
ZHANG Wanlu.Research and application of seismic motion inversion technique[J].Unconvenventonal Oil & Gas, 2019,6(3):21-25,14.

基金

本项研究受国家科技重大专项项目“松辽盆地致密油开发示范工程”(2017ZX05071)资助。
PDF(2925 KB)

46

Accesses

0

Citation

Detail

段落导航
相关文章

/