根据低角度前积地震反射特征划分分流砂坝型浅水三角洲相带

周琨

石油地球物理勘探 ›› 2023, Vol. 58 ›› Issue (4) : 961-969.

PDF(6710 KB)
PDF(6710 KB)
石油地球物理勘探 ›› 2023, Vol. 58 ›› Issue (4) : 961-969. DOI: 10.13810/j.cnki.issn.1000-7210.2023.04.021
综合研究

根据低角度前积地震反射特征划分分流砂坝型浅水三角洲相带

  • 周琨
作者信息 +

Division of distributary sandbar-type shallow-water delta facies belts based on low-angle progradation seismic reflection characteristics

  • ZHOU Kun
Author information +
文章历史 +

摘要

Z6区块钻井分布不均,目标储层砂泥岩构成复杂且砂岩、泥岩波阻抗特征相近,因此对于Z6区块西侧少井地区,分析有利沉积相带展布特征及准确刻画砂体边界存在一定困难。单凭地震反射振幅特征难以区分砂、泥岩,应用常规叠后地震反演等技术无法有效预测储层展布范围。为此,借助三维地震及钻井资料,结合前人的浅水三角洲沉积特征研究成果,建立适合Z6区块的沉积模式和正演模型,通过砂体地震响应特征分析、地震属性优选,预测有利储层展布范围,获得以下认识:①低角度前积或侧积对于下伏地层地震波形的影响是判断砂体边界的关键,适用于划分分流砂坝型浅水三角洲沉积相带,对勘探阶段预测有利储层的延展范围尤为关键;②相较于传统的振幅类属性,瞬时相位和瞬时频率属性更清晰地刻画了Z6区块分流砂坝和分流间湾边界,尤其是瞬时相位属性不受振幅影响,对于岩性尖灭等地质体的相位变化也十分敏感;③靠近物源方向,砂体受分流河道控制较明显,呈条状特征;靠近湖中心位置,砂体受湖浪改造作用更明显,呈坨状、朵叶状。上述研究表明,在少井情况下,在沉积模式的指导下,利用地震属性分析预测的分流砂坝砂体展布范围与钻井资料揭示的砂、泥岩发育情况吻合较好,通过分析有效的地震属性可合理地刻画分流砂坝型浅水三角洲砂体边界。

Abstract

The distribution of drilling in the Z6 block is non-uniform, and the target reservoir is composed of complex sandstone and mudstone with similar wave impedance characteristics. Therefore, for the region with few wells on the west side of the Z6 block, it is difficult to analyze the distribution characteristics of favorable sedimentary facies belts and accurately characterize the sand body boundaries. Relying solely on seismic reflection amplitude characteristics makes it challenging to distinguish sandstone from mudstone, and conventional post-stack seismic inversion techniques are ineffective in predicting reservoir distribution. Thus, a sedimentary model with its forward modeling suitable for the Z6 block is established based on three-dimensional(3D) seismic and drilling data, coupled with previous studies on the sedimentary characteristics of the shallow-water delta. Through analysis of the seismic response characteristics of sand bodies and seismic attribute optimization, the favorable reservoir distribution is predicted. The following findings are obtained:① The influence of low-angle progradation or lateral accretion on the seismic waveform of the underlying strata is the key to determining the boundary of sand bodies. This approach is suitable for delineating the sedimentary facies belts of the distributary sandbar-type shallow-water delta, and it is critical for predicting the extension range of the favorable reservoir during the exploration phase. ②Instantaneous phase and instantaneous frequency attributes more clearly depict the distributary sandbar and the boundary between the distributary channel bays compared with traditional amplitude-type attributes, especially the instantaneous phase attribute, which is not affected by amplitude and is sensitive to phase changes in geological bodies such as lithologic pinchout. ③ Near the source direction, the sand bodies are significantly controlled by distributary channels, exhibiting a linear feature, while near the center of the lake, the sand bodies are obviously affected by the lake wave, exhibiting lump-shaped and lobeshaped features. This study shows that under the guidance of the sedimentary model, the distribution of the distributary sandbar predicted by seismic attribute analysis and the characteristics of sandstone and mudstone revealed by drilling data match well in the case of few wells. Furthermore, the sand body boundaries of the distributary sandbartype shallow-water delta can be reasonably depicted through effective seismic attribute analysis.

关键词

分流砂坝型浅水三角洲 / 沉积模式 / 正演模拟 / 地震属性 / 储层预测

Key words

distributary sandbar-type shallow-water delta / sedimentary model / forward modeling / seismic attribute / reservoir prediction

引用本文

导出引用
周琨. 根据低角度前积地震反射特征划分分流砂坝型浅水三角洲相带[J]. 石油地球物理勘探, 2023, 58(4): 961-969 https://doi.org/10.13810/j.cnki.issn.1000-7210.2023.04.021
ZHOU Kun. Division of distributary sandbar-type shallow-water delta facies belts based on low-angle progradation seismic reflection characteristics[J]. Oil Geophysical Prospecting, 2023, 58(4): 961-969 https://doi.org/10.13810/j.cnki.issn.1000-7210.2023.04.021
中图分类号: P631   

参考文献

[1] FISK H N, KOLB C R, MCFARLAN E J, et al. Sedimentary framework of the modern Mississippi delta[J]. Journal of Sedimentary Research, 1954, 24(2):76-99.
[2] 王俊, 赵家宏, 腾军, 等. 浅水三角洲前缘砂体地震沉积学研究——以松南乾安地区上白垩统青三段为例[J]. 沉积学报, 2018, 36(3):570-583.
WANG Jun, ZHAO Jiahong, TENG Jun, et al. Seismic sedimentology research on shallow water delta front sandbodies:A case study on Member 3 of upper Cretaceous Qingshankou Formation in Qian'an area, south Songliao Basin, NE China[J]. Acta Sedimentologica Sinica, 2018, 36(3):570-583.
[3] 叶蕾, 朱筱敏, 秦祎, 等. 断陷湖盆浅水三角洲沉积体系[J]. 地球科学与环境学报, 2018, 40(2):186-202.
YE Lei, ZHU Xiaomin, QIN Yi, et al. Depositional system of shallow water delta in rifted lacustrine basin[J]. Journal of Earth Sciences and Environment, 2018, 40(2):186-202.
[4] 曾洪流, 赵贤正, 朱筱敏, 等. 隐性前积浅水曲流河三角洲地震沉积学特征——以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J]. 石油勘探与开发, 2015, 42(5):566-576.
ZENG Hongliu, ZHAO Xianzheng, ZHU Xiaomin, et al. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta:A case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(5):566-576.
[5] 孙靖, 薛晶晶, 费李莹, 等. 粗粒浅水三角洲沉积特征及模式——以准噶尔盆地莫北地区侏罗系三工河组为例[J]. 东北石油大学学报, 2022, 46(2):13-22.
SUN Jing, XUE Jingjing, FEI Liying, et al. Sedimentary characteristics and model of coarse-grained shallow-water delta:a case study of Jurassic Sangonghe Formation in Mobei Area, Junggar Basin[J]. Journal of Northeast Petroleum University, 2022, 46(2):13-22.
[6] 刘自亮, 沈芳, 朱筱敏, 等. 浅水三角洲研究进展与陆相湖盆实例分析[J]. 石油与天然气地质, 2015, 36(4):596-604.
LIU Ziliang, SHEN Fang, ZHU Xiaomin, et al. Progress of shallow-water delta research and a case study of continental lake basin[J]. Oil & Gas Geology, 2015, 36(4):596-604.
[7] 王夏斌, 姜在兴, 胡光义, 等. 浅水三角洲分流河道沉积模式分类[J]. 地球科学与环境学报, 2020, 42(5):654-667.
WANG Xiabin, JIANG Zaixing, HU Guangyi, et al. Classification of sedimentary models of distributary channels in shallow-water deltas[J]. Journal of Earth Sciences and Environment, 2020, 42(5):654-667.
[8] 张昌民, 尹太举, 朱永进, 等. 浅水三角洲沉积模式[J]. 沉积学报, 2010, 28(5):933-944.
ZHANG Changmin, YIN Taiju, ZHU Yongjin, et al. Shallow water deltas and models[J]. Acta Sedimentologica Sinica, 2010, 28(5):933-944.
[9] 吴穹螈, 陈晓明, 赵汉卿, 等. 分流砂坝型浅水三角洲储层构型研究[J]. 西南石油大学学报(自然科学版), 2019, 41(2):53-63.
WU Qiongyuan, CHEN Xiaoming, ZHAO Hanqing, et al. Study on the hierarchy of a distributary-mouth bar type shallow-water delta reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(2):53-63.
[10] 郑胜. 准中地区三工河组浅水三角洲沉积模式及油气勘探意义[J]. 特种油气藏, 2019, 26(1):87-93.
ZHENG Sheng. Sedimentary pattern of the shallow-water delta in the Sangonghe Formation of Central Junggar Basin and its significance for hydrocarbon exploration[J]. Special Oil and Gas Reservoirs, 2019, 26(1):87-93.
[11] 尹太举, 张昌民, 朱永进, 等. 叠覆式三角洲——一种特殊的浅水三角洲[J]. 地质学报, 2014, 88(2):263-272.
YIN Taiju, ZHANG Changmin, ZHU Yongjin, et al. Overlapping delta:A new special type of delta formed by overlapped lobes[J]. Acta Geologica Sinica, 2014, 88(2):263-272.
[12] 朱筱敏, 刘媛, 方庆, 等. 大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例[J]. 地学前缘, 2012, 19(1):89-99.
ZHU Xiaomin, LIU Yuan, FANG Qing, et al. Formation and sedimentary model of shallow delta in large-scale lake:example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin[J]. Earth Science Frontiers, 2012, 19(1):89-99
[13] 金振奎, 李燕, 高白水, 等. 现代缓坡三角洲沉积模式——以鄱阳湖赣江三角洲为例[J]. 沉积学报, 2014, 32(4):710-723.
JIN Zhenkui, LI Yan, GAO Baishui, et al. Depositional model of modern gentle-slope delta:A case study from Ganjiang delta in Poyang Lake[J]. Acta Sedimentologica Sinica, 2014, 32(4):710-723.
[14] 张家乐, 程冰洁, 徐天吉, 等. 应用地震属性主成分分析识别古河道[J]. 石油地球物理勘探, 2023, 58(1):190-195.
ZHANG Jiale, CHENG Bingjie, XU Tianji, et al. Identification of paleochannels by seismic attribute principal component analysis[J]. Oil Geophysical Prospecting, 2023, 58(1):190-195.
[15] 王天云, 韩小锋, 许海红, 等. 无监督神经网络地震属性聚类方法在沉积相研究中的应用[J]. 石油地球物理勘探, 2021, 56(2):372-379.
WANG Tianyun, HAN Xiaofeng, XU Haihong, et al. Study on sedimentary facies based on unsupervised neural network seismic attribute clustering[J]. Oil Geophysical Prospecting, 2021, 56(2):372-379.
[16] 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5):845-861.
HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5):845-861.
[17] 王居峰, 邓宏文, 蔡希源. 准噶尔盆地中部侏罗系层序地层格架[J]. 石油勘探与开发, 2005, 32(1):23-26.
WANG Jufeng, DENG Hongwen, CAI Xiyuan. Jurassic sequence stratigraphic frames in the Middle Junggar Basin[J]. Petroleum Exploration and Development, 2005, 32(1):23-26.
[18] 刘豪, 王英民, 王媛, 等. 准噶尔盆地侏罗系三工河组层序界面结构分析[J]. 新疆石油地质, 2002, 23(2):127-129.
LIU Hao, WANG Yingmin, WANG Yuan, et al. Analysis of interfacial structure in J1s22 internal sequence of Jurassic Sangonghe Formation in Junggar Basin[J]. Xinjiang Petroleum Geology, 2002, 23(2):127-129.
[19] 费李莹, 王仕莉, 吴涛, 等. 坡折带对砂质碎屑流沉积的控制作用——以准噶尔盆地盆1井西凹陷及周缘侏罗系三工河组为例[J]. 油气地质与采收率, 2020, 27(2):26-34.
FEI Liying, WANG Shili, WU Tao, et al. Control of slope break zone on sandy debris flow deposition:A case study of Jurassic Sangonghe Formation in west sag of Well Pen-1 and its periphery in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2):26-34.
[20] 赵虎, 尹成, 鲍祥生, 等. 不同正演方法对地震属性的影响[J]. 石油地球物理勘探, 2013, 48(5):728-733.
ZHAO Hu, YIN Cheng, BAO Xiangsheng, et al. Different forward modeling method effects on seismic attributes[J]. Oil Geophysical Prospecting, 2013, 48(5):728-733.
[21] 井涌泉, 栾东肖, 张雨晴, 等. 基于地震属性特征的河流相叠置砂岩储层预测方法[J]. 石油地球物理勘探, 2018, 53(5):1049-1058.
JING Yongquan, LUAN Dongxiao, ZHANG Yuqing, et al. Fluvial facies inter-bedded sand reservoir prediction with seismic multi-attributes[J]. Oil Geophysical Prospecting, 2018, 53(5):1049-1058.
[22] 张宪国, 吴啸啸, 黄德榕, 等. 极限学习机驱动的地震多属性融合识别曲流带单一点坝[J]. 石油地球物理勘探, 2021, 56(6):1340-1350.
ZHANG Xianguo, WU Xiaoxiao, HUANG Derong, et al. Single point bar interpretation in meandering belt with extreme learning machine driven multiple seismic attributes fusion[J]. Oil Geophysical Prospecting, 2021, 56(6):1340-1350.
[23] 廖仪, 刘巍, 胡林, 等. 地震保幅高低频拓展与多尺度贝叶斯融合反演[J]. 石油地球物理勘探, 2021, 56(6):1330-1339.
LIAO Yi, LIU Wei, HU Lin, et al. Research on high-and low-frequency expansion of seismic amplitude preserving and multi-scale Bayesian fusion inversion[J]. Oil Geophysical Prospecting, 2021, 56(6):1330-1339.
[24] 张学娟, 卢双舫, 贾承造. 基于沉积特征分区域的多元地震属性储层定量预测方法[J]. 石油地球物理勘探, 2012, 47(1):115-120.
ZHANG Xuejuan, LU Shuangfang, JIA Chengzao. The regional multiple seismic attribute quantitative reservoir prediction method based on sedimentary characteristics[J]. Oil Geophysical Prospecting, 2012, 47(1):115-120.
[25] 倪凤田. 基于地震属性分析的储层预测方法研究[D]. 山东青岛:中国石油大学(华东), 2008.
PDF(6710 KB)

56

Accesses

0

Citation

Detail

段落导航
相关文章

/