针对常规叠前AVO反演存在强烈依赖于初始模型、易陷入局部最优值等问题,对基本遗传算法进行了自适应改进,然后将改进遗传算法与粒子群算法相结合,发展了遗传-粒子群算法混合的GA-PSO协同进化智能优化算法;对比改进遗传算法、粒子群算法及GA-PSO协同进化算法反演的理论模型合成地震记录的纵波速度、横波速度及密度,表明后者具有精确的反演结果及更强的稳定性和抗噪能力;最后利用GA-PSO协同进化算法对实际地震数据进行叠前AVO非线性反演,验证了算法的应用效果和适用性。
Abstract
As the conventional prestack AVO inversion is dependent on the initial model and easily trapped into a local optimal solution,we propose a nonlinear AVO inversion based on the hybrid intelligent optimization algorithm.First we improve adaptively the conventional genetic algorithm.Then combining the improved genetic algorithm and particle swarm algorithm,we put forward a hybrid GA-PSO co-evolution algorithm.After that we apply the improved genetic algorithm,the particle swarm algorithm,and the GA-PSO co-evolution algorithm to model synthetic data.With the comparison of inverted P-wave velocity,shear wave velocity and density,the GA-PSO co-evolution algorithm shows better inversion result,better stability,and better anti-noise ability than the other two algorithms.In the end,AVO nonlinear inversion with the proposed algorithm is used to real data,and the results confirm its effectiveness and applicability.
关键词
遗传算法 /
粒子群算法 /
混合智能优化算法 /
非线性AVO反演
{{custom_keyword}} /
Key words
genetic algorithm /
particle swarm optimization /
hybrid intelligent optimization /
nonlinear AVO inversion
{{custom_keyword}} /
中图分类号:
P631
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 严哲,顾汉明,赵小鹏.基于蚁群算法的非线性AVO反演.石油地球物理勘探,2009,44(6):700-702.
Yan Zhe,Gu Hanming,Zhao Xiaopeng.Non-linear AVO inversion based on ant colony algorithm.OGP,2009,44(6):700-702.
[2] 师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法.工程地球物理学报,2008,5(2):129-140.
Shi Xueming,Wang Jiaying.Lecture on nonlinear inverse methods in geophysics 4:genetic algorithm method.Chinese Journal of Engineering Geophysics,2008,5(2):129-140.
[3] Porsani M J,Stoffa P L,Sen M K et al.A combined genetic and linear inversion algorithm for waveform inversion.SEG Technical Program Expanded Abstracts,1993,12:692-695.
[4] Priezzhev I I,Shmaryan L E and Bejarano G.Non-linear multitrace seismic inversion using neural network and genetical gorithm-Genetic inversion.EAGE 70th Conference & Technical Exhibition Extended Abstracts,2008,137-145.
[5] Veeken P C,Priezzhev I I,Shmaryan L E et al.Nonlinear multitrace genetic inversion applied on seismic data across the Shtokman field off shore northern Russia.Geophysics,2009,74(6):49-59.
[6] Pantelis S,Irfan A,Petros M.Applications of hybrid genetical gorithms in seismic tomography.Journal of Applied Geophysics,2011,75(3):479-489.
[7] Bai J,Xu Z,Xiao Y F.Nonlinear hybrid optimization algorithm for seismic impedance inversion.CPS/SEG Beijing 2014 International Geophysical Conference,2014:541-544.
[8] 成琥,赵宪生,王红霞等.基于BP网络和遗传算法的波阻抗混合反演.石油物探,2006,45(6):574-579.
Cheng Hu,Zhao Xiansheng,Wang Hongxia et al.Acoustic impedance blending inversion based on BP and GA algorithm.GPP,2006,45(6):574-579.
[9] 聂茹,岳建华,邓帅奇.地震波阻抗反演的免疫粒子群算法.中国矿业大学学报,2010,39(5):733-739.
Nie Ru,Yue Jianhua,Deng Shuaiqi.Immune particle swarm optimization for seismic wave impedance inversion.Journal of China University of Mining & Technology,2010,39(5):733-739.
[10] 谢玮,王彦春,刘建军等.基于粒子群优化最小二乘支持向量机的非线性AVO反演.石油地球物理勘探,2016,51(6):1187-1194.
Xie Wei,Wang Yanchun,Liu Jianjun et al.Non-linear AVO inversion based on PSO-LSSVM.OGP,2016,51(6):1187-1194.
[11] John H H.Adaptation in Natural and Artificial Systems.University of Michigan Press,1975.
[12] Kennedy J,Eberhart RC.Particle swarm optimization.Proceeding of IEEE International Conference on Neural Networks,1995,4:1942-1948.
[13] 张丰麒,金之钧,盛秀杰等.贝叶斯三参数低频软约束同步反演.石油地球物理勘探,2016,51(5):965-975.
Zhang Fengqi,Jin Zhijun,Sheng Xiujie et al.Bayesian prestack three-term inversion with soft low-frequency constraint.OGP,2016,51(5):965-975.
[14] 王丽萍,顾汉明,李宗杰.塔中奥陶系碳酸盐岩缝洞型储层贝叶斯叠前反演预测研究.石油物探,2014,53(6):720-726.
Wang Liping,Gu Hanming,Li Zongjie.The prestack Bayesian inversion prediction study of Ordovician fractured-vuggy carbonate reservoir in Tazhong area.GPP,2014,53(6):720-726.
[15] Daniel O P,Danilo R V.Blocky inversion of prestack seismic data using mixed-norms.SEG Technical Program Expanded Abstracts,2014,33:3106-3111.
[16] 慕彩红.协同进化数值优化算法及其应用研究.陕西西安:西安电子科技大学,2010.
[17] 王建丽,夏桂梅,王希云.一种基于协同进化的随机粒子群算法.太原科技大学学报,2010,31(3):185-188.
Wang Jianli,Xia Guimei,Wang Xiyun.A stochastic particle swarm optimization based the cooperative evolution.Journal of Taiyuan University of Science and Technology,2010,31(3):185-188.
[18] Wolpert D H,Macready W G.No free lunch theo-rems for optimization.IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
本项研究受国家重大科技专项子专题"莺琼盆地高温高压天然气富集规律与勘探开发关键技术"(2016ZX05024-005)、中国地质科学院物化探研究所基本科研业务费项目(WHS201308)和2016年"中央高校基本科研业务费"新青年教师计划等联合资助。
{{custom_fund}}