基于混合智能优化算法的非线性AVO反演

方中于, 王丽萍, 杜家元, 梁立锋

石油地球物理勘探 ›› 2017, Vol. 52 ›› Issue (4) : 797-804.

PDF(6158 KB)
PDF(6158 KB)
石油地球物理勘探 ›› 2017, Vol. 52 ›› Issue (4) : 797-804. DOI: 10.13810/j.cnki.issn.1000-7210.2017.04.017
综合研究

基于混合智能优化算法的非线性AVO反演

  • 方中于1,2, 王丽萍3,4, 杜家元5, 梁立锋2
作者信息 +

Nonlinear AVO inversion based on hybrid intelligent optimization algorithm

  • Fang Zhongyu1,2, Wang Liping3,4, Du Jiayuan5, Liang Lifeng2
Author information +
文章历史 +

摘要

针对常规叠前AVO反演存在强烈依赖于初始模型、易陷入局部最优值等问题,对基本遗传算法进行了自适应改进,然后将改进遗传算法与粒子群算法相结合,发展了遗传-粒子群算法混合的GA-PSO协同进化智能优化算法;对比改进遗传算法、粒子群算法及GA-PSO协同进化算法反演的理论模型合成地震记录的纵波速度、横波速度及密度,表明后者具有精确的反演结果及更强的稳定性和抗噪能力;最后利用GA-PSO协同进化算法对实际地震数据进行叠前AVO非线性反演,验证了算法的应用效果和适用性。

Abstract

As the conventional prestack AVO inversion is dependent on the initial model and easily trapped into a local optimal solution,we propose a nonlinear AVO inversion based on the hybrid intelligent optimization algorithm.First we improve adaptively the conventional genetic algorithm.Then combining the improved genetic algorithm and particle swarm algorithm,we put forward a hybrid GA-PSO co-evolution algorithm.After that we apply the improved genetic algorithm,the particle swarm algorithm,and the GA-PSO co-evolution algorithm to model synthetic data.With the comparison of inverted P-wave velocity,shear wave velocity and density,the GA-PSO co-evolution algorithm shows better inversion result,better stability,and better anti-noise ability than the other two algorithms.In the end,AVO nonlinear inversion with the proposed algorithm is used to real data,and the results confirm its effectiveness and applicability.

关键词

遗传算法 / 粒子群算法 / 混合智能优化算法 / 非线性AVO反演

Key words

genetic algorithm / particle swarm optimization / hybrid intelligent optimization / nonlinear AVO inversion

引用本文

导出引用
方中于, 王丽萍, 杜家元, 梁立锋. 基于混合智能优化算法的非线性AVO反演[J]. 石油地球物理勘探, 2017, 52(4): 797-804 https://doi.org/10.13810/j.cnki.issn.1000-7210.2017.04.017
Fang Zhongyu, Wang Liping, Du Jiayuan, Liang Lifeng. Nonlinear AVO inversion based on hybrid intelligent optimization algorithm[J]. Oil Geophysical Prospecting, 2017, 52(4): 797-804 https://doi.org/10.13810/j.cnki.issn.1000-7210.2017.04.017
中图分类号: P631   

参考文献

[1] 严哲,顾汉明,赵小鹏.基于蚁群算法的非线性AVO反演.石油地球物理勘探,2009,44(6):700-702.
Yan Zhe,Gu Hanming,Zhao Xiaopeng.Non-linear AVO inversion based on ant colony algorithm.OGP,2009,44(6):700-702.
[2] 师学明,王家映.地球物理资料非线性反演方法讲座(四)遗传算法.工程地球物理学报,2008,5(2):129-140.
Shi Xueming,Wang Jiaying.Lecture on nonlinear inverse methods in geophysics 4:genetic algorithm method.Chinese Journal of Engineering Geophysics,2008,5(2):129-140.
[3] Porsani M J,Stoffa P L,Sen M K et al.A combined genetic and linear inversion algorithm for waveform inversion.SEG Technical Program Expanded Abstracts,1993,12:692-695.
[4] Priezzhev I I,Shmaryan L E and Bejarano G.Non-linear multitrace seismic inversion using neural network and genetical gorithm-Genetic inversion.EAGE 70th Conference & Technical Exhibition Extended Abstracts,2008,137-145.
[5] Veeken P C,Priezzhev I I,Shmaryan L E et al.Nonlinear multitrace genetic inversion applied on seismic data across the Shtokman field off shore northern Russia.Geophysics,2009,74(6):49-59.
[6] Pantelis S,Irfan A,Petros M.Applications of hybrid genetical gorithms in seismic tomography.Journal of Applied Geophysics,2011,75(3):479-489.
[7] Bai J,Xu Z,Xiao Y F.Nonlinear hybrid optimization algorithm for seismic impedance inversion.CPS/SEG Beijing 2014 International Geophysical Conference,2014:541-544.
[8] 成琥,赵宪生,王红霞等.基于BP网络和遗传算法的波阻抗混合反演.石油物探,2006,45(6):574-579.
Cheng Hu,Zhao Xiansheng,Wang Hongxia et al.Acoustic impedance blending inversion based on BP and GA algorithm.GPP,2006,45(6):574-579.
[9] 聂茹,岳建华,邓帅奇.地震波阻抗反演的免疫粒子群算法.中国矿业大学学报,2010,39(5):733-739.
Nie Ru,Yue Jianhua,Deng Shuaiqi.Immune particle swarm optimization for seismic wave impedance inversion.Journal of China University of Mining & Technology,2010,39(5):733-739.
[10] 谢玮,王彦春,刘建军等.基于粒子群优化最小二乘支持向量机的非线性AVO反演.石油地球物理勘探,2016,51(6):1187-1194.
Xie Wei,Wang Yanchun,Liu Jianjun et al.Non-linear AVO inversion based on PSO-LSSVM.OGP,2016,51(6):1187-1194.
[11] John H H.Adaptation in Natural and Artificial Systems.University of Michigan Press,1975.
[12] Kennedy J,Eberhart RC.Particle swarm optimization.Proceeding of IEEE International Conference on Neural Networks,1995,4:1942-1948.
[13] 张丰麒,金之钧,盛秀杰等.贝叶斯三参数低频软约束同步反演.石油地球物理勘探,2016,51(5):965-975.
Zhang Fengqi,Jin Zhijun,Sheng Xiujie et al.Bayesian prestack three-term inversion with soft low-frequency constraint.OGP,2016,51(5):965-975.
[14] 王丽萍,顾汉明,李宗杰.塔中奥陶系碳酸盐岩缝洞型储层贝叶斯叠前反演预测研究.石油物探,2014,53(6):720-726.
Wang Liping,Gu Hanming,Li Zongjie.The prestack Bayesian inversion prediction study of Ordovician fractured-vuggy carbonate reservoir in Tazhong area.GPP,2014,53(6):720-726.
[15] Daniel O P,Danilo R V.Blocky inversion of prestack seismic data using mixed-norms.SEG Technical Program Expanded Abstracts,2014,33:3106-3111.
[16] 慕彩红.协同进化数值优化算法及其应用研究.陕西西安:西安电子科技大学,2010.
[17] 王建丽,夏桂梅,王希云.一种基于协同进化的随机粒子群算法.太原科技大学学报,2010,31(3):185-188.
Wang Jianli,Xia Guimei,Wang Xiyun.A stochastic particle swarm optimization based the cooperative evolution.Journal of Taiyuan University of Science and Technology,2010,31(3):185-188.
[18] Wolpert D H,Macready W G.No free lunch theo-rems for optimization.IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.

基金

本项研究受国家重大科技专项子专题"莺琼盆地高温高压天然气富集规律与勘探开发关键技术"(2016ZX05024-005)、中国地质科学院物化探研究所基本科研业务费项目(WHS201308)和2016年"中央高校基本科研业务费"新青年教师计划等联合资助。

PDF(6158 KB)

37

Accesses

0

Citation

Detail

段落导航
相关文章

/